The MolNetEnhancer workflow was applied to molecular networking analysis of the CH2Cl2-soluble fraction of the rhizomes of Curculigo orchioides, which showed a potent inhibitory effect on the lipopolysaccharide (LPS)-induced nitric oxide production. Among the molecular network, clusters of cycloartane-type triterpenoids were classified using the ClassyFire module of MolNetEnhancer, and their structures were predicted by the in silico fragment analysis tool, Network Annotation Propagation (NAP). Using mass spectrometry (MS)-guided isolation methods, six cycloartane-type triterpenoids (1–6) were isolated, and their structures were elucidated based on the interpretation of NMR, HRESIMS, and single-crystal X-ray diffraction. Among the isolates, compounds 1 and 4, which have an α,β-unsaturated carbonyl moiety on the A-ring, exhibited significant inhibitory effects on LPS-induced nitric oxide production in RAW264.7 cells with IC50 values of 12.4 and 11.8 μM, respectively.