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The ever-growing world population, increasingly frequent extreme weather

events and conditions, emergence of novel devastating crop pathogens and

the social strive for quality food products represent a huge challenge for

current and future agricultural production systems. To address these chal-

lenges and find realistic solutions, it is becoming more important by the

day to understand the complex interactions between plants and the envi-

ronment, mainly the associated organisms, but in particular pathogens. In

the past several years, research in the fields of plant pathology and plant–
microbe interactions has enabled tremendous progress in understanding

how certain receptor-based plant innate immune systems function to suc-

cessfully prevent infections and diseases. In this review, we highlight and

discuss some of these new ground-breaking discoveries and point out

strategies of how pathogens counteract the function of important core con-

vergence hubs of the plant immune system. For practical reasons, we

specifically place emphasis on potential applications that can be detracted

by such discoveries and what challenges the future of agriculture has to

face, but also how these challenges could be tackled.

Introduction

Food production must be doubled by 2050 to meet the

global demand with current projections, which

becomes even more challenging with the accelerated

rate of climate change that is expected to severely

affect food production cycles [1]. Historical precedents

of pathogen-derived famines are well known, and
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bound to happen again if there are no safety measures

in place [2,3]. Droughts, high temperatures, frosts,

floods and other extreme weather phenomena in agri-

culturally sensitive regions are expected to alter the

dynamics of plant-pathogen interactions and pose seri-

ous new challenges for agriculture [4]. Despite the grim

challenges ahead, recent discoveries hold a lot of pro-

mise, however, only if they are effectively utilized in

the field and greenhouses. Thus, the real challenge in

the coming years is finding the best way to translate

fundamental plant pathology research into practical

applications for agriculture in real field conditions. A

focal point of recent discoveries is the intersection of

different types of plant immune responses and address-

ing some of them in this review on a wider context

may hold one of the main keys for developing useful

agricultural applications for the future. However, it is

becoming an increasing necessity for scientists to reach

out to as many specialists and non-specialists, so that

they can utilize effectively and quickly new knowledge

and concepts. Towards this end, this review touches

on a wider range of concepts and references, without

analysing them, which are necessary to place this new

knowledge on a wider context for the non-specialists.

Plant pathogens use a large repertoire of molecules

for inducing a successful infection and proliferation

through their host plant [5]. Simultaneously, these

molecules can also enable the host plant to recognize

the invading pathogen and activate various levels of

immune responses that have been eloquently defined in

the ‘Zig-Zag’ model, which is a dynamic interplay

between plant pathogens and their host plants, driving

the evolution of both pathogenicity and defence

response [6]. Typically, plants activate their first level

of receptor-based defence through recognition of

pathogen- or damage-associated molecular patterns

(PAMPs or DAMPs, respectively) by pattern-

recognition receptors (PRRs; Fig. 1) [7,8]. Pattern-

recognition receptor activation triggers an immune

response, which is generally referred to as PAMP-

Triggered Immunity (PTI) [6]. Although PTI can

restrict most pathogen invasions, adapted pathogens

have evolved virulence proteins, called effectors, which

can successfully suppress PTI and induce Effector-

Triggered Susceptibility (ETS) [9,10]. In response,

plants evolved a second level of defence that relies pri-

marily on direct or indirect recognition of effectors by

intracellular Nucleotide-binding Leucine-rich repeat

Receptors (NLRs) and activate a stronger, more

robust immune response, known as Effector-Triggered

Immunity (ETI; Fig. 1) [6].

Both PRRs and NLRs activate a series of signalling

events, which were often regarded as systems that

functioned separately from one another, but an ever-

growing number of recent studies shows that they

share common cellular components and defence mech-

anisms, such as production of reactive oxygen species

(ROS), initiation of calcium ion (Ca2+) influx,

mitogen-activated protein kinase (MAPK) activation

and transcriptional reprogramming among others

(Fig. 1) [11,12]. Mutual interdependencies between

PRR- and NLR-mediated immunity, as well as the

notion that ETI is potentiating an already activated

PTI, have been shown in recent studies [11,13]. Pin-

pointing and analysing the critical intersections in this

plant immunity crosstalk is vital for future develop-

ment of agricultural applications such as the (a)

designing of artificial resistance (R) genes [14], (b)

selection of R genes with an optimal cost-to-fitness

balance [15,16], (c) targeting susceptibility host genes

via CRISPR-Cas9 technology [17], (d) creating

enhanced molecular diagnostic tools [18,19], (e) devel-

oping advanced crop protection applications [20], (f)

delivering the right genomic sequences of host- and

pathogen-specific defence-related genes into cells with-

out transforming them [21] and (g) breeding or engi-

neering crops/microbes for manipulating the natural

microbiome to ward off pathogens [22,23].

In this review, we would like to highlight the latest

developments in plant immunity with an emphasis on

the similarity between PRR- and NLR- mediated

defence responses, their core convergence hubs that

are being exploited by pathogens and discuss which

factors will influence the possible strategies and emerg-

ing applications that can be extrapolated from such

knowledge in the future to stave off crop losses and

ensure global food security.

PRR-mediated immunity—resistance
initiated at the cell surface

Recognition of extracellular non-self or damage-

associated molecules is mediated by PRRs: multi-

domain proteins with an N-terminal extracellular

ligand-binding domain, a central single-pass transmem-

brane domain, and either an intracellular kinase

domain, in the case of Receptor-Like Kinases (RLKs),

or a short cytosolic tail, as found in Receptor-Like

Proteins (RLPs; Fig. 2) [7,8]. The extracellular domain

of PRRs determines the ligand-binding specificity and

can be a leucine-rich repeat (LRR) domain, a lysin

motif (LysM), or a lectin-like motif among others [7].

LRR-containing PRRs typically bind peptides or pro-

teins, such as the Arabidopsis thaliana (hereafter Ara-

bidopsis) LRR-RLKs Flagellin Sensitive 2 (FLS2) and

EF-TU Receptor (EFR) that perceive conserved

2 The FEBS Journal (2022) � 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of
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regions of bacterial flagellin or elongation factor EF-

Tu, respectively [24–26]. LysM-type RLKs like the co-

receptor Chitin Elicitor Receptor Kinase 1 (CERK1)

can bind carbohydrate-based ligands, such as fungal

chitin or bacterial peptidoglycan [27,28]. An example

of a lectin-like PRR is Lipooligosaccheride-Specific

Reduced Elicitation (LORE) that can perceive

bacterial 3-hydroxy fatty acids [29]. Given the huge

number of RLKs and RLPs in plants and their highly

variable ligand-binding domains [30], PRRs can recog-

nize a diverse range of PAMPs and DAMPs, effec-

tively combating most non- or maladapted pathogens

[6,7]. Intriguingly, these receptors can also be easily

transferred between different species and demonstrated

Fig. 1. Principles of plant receptor-based innate immune signalling and effector-mediated inhibition of signalling components. Pathogen-

recognition receptors (PRRs)-mediated immunity (PTI): Receptor-Like-Kinases (RLK) and -proteins (RLP) are bind Pathogen-Associated-

Molecular- or Danger-Associated-Molecular-Patterns (PAMPs/DAMPs) present in the extracellular space during pathogen infections. Ligand

(PAMP/DAMP) binding enables recruitment of the SERK co-receptor, followed by trans- and auto-phosphorylations (yellow stars) of the

receptors kinase domains, which leads to the initiation of the PRR-triggered-immune signalling cascade: Phosphorylation of Receptor-Like-

Cytoplasmic-Kinases (RLCKs), activation of RBOHD and CNGCs to induce the Reactive-oxygen-species (ROS) burst and calcium influx,

phosphorylation of the MAP kinase signalling pathway, and finally initiation of the transcriptional reprograming through the activation of

transcription factors (TF) to induce defence gene expression. Pathogen-derived effector proteins (in red letters) can target the PRR-mediated

immune response at different components. AvrPto inhibits PRR signalling directly at the LRR-RLK kinase domains and HopF2 can block

MAPK activity. Nucleotide-binding leucine-rich repeat (NLRs)-mediated immunity (ETI): sensor NLRs of the coiled-coil NLR (CNL) and Toll-/

Interleukin-1 receptor NLR (TNL) family perceive the presence or activity of pathogen-derived intracellular effectors, which enables their

oligomerization and activation. CNLs form a wheel-like pentameric resistosome that translocate to the plasma membrane to facilitate cal-

cium influx, required for cell death and resistance induction. TNL tetramerization results in the activation of the N-terminal TIR domain

embedded enzymatic NADase and ADPR polymerase-like activity. The TNL catalysed products pRib-AMP/ADP, di-ADPR and ADPR-ATP

initiate association of the EDS1-PAD4/SAG101 heterodimers with RNLs. Formation of this signalling hub is required for activation of defence

gene expression and resistance. If association of RNLs with EDS1-PAD4/SAG101 heterodimers is required for RNL cell death activity is cur-

rently unclear. However, RNL activation leads to self-association and the formation of oligomeric complexes, potentially resistosomes (exact

number of monomers in there is unknown) at the plasma membrane, which is required for calcium influx and cell death initiation. NLR func-

tion is also inhibited by pathogen effector activity. The bacterial effector AvrRpt2 was shown to indirectly block activation of a specific CNL

and bacterial HopAM1 interferes with downstream enzymatic processes of TNLs to promote virulence. Immune responses initiated by both

PRRs and NLRs are indicated by ‘shared immune outputs’ on the lower left corner. Solid lines/arrows indicate experimentally demonstrated

signalling pathways and events, whereas dashed lines indicate not experimentally proven processes.

3The FEBS Journal (2022) � 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of
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to be a promising strategy to engineer broad-spectrum

and durable disease resistance in economically impor-

tant crops [31,32]. The most famous example is the

Arabidopsis EFR that can induce or enhance bacterial

resistance in a range of plant species, which includes

tomato, potato, apple, sweet orange, or even rice, if

genetically engineered into these plants [33–38].

PRR activation—formation of heteromeric

receptor signalling complexes

The activation and downstream signalling of different

types of PRRs is thought to be governed by a similar

(molecular) mechanism. So far, all characterized PRRs

perceive their corresponding ligands through their

extracellular ligand-binding domains [39,40], and upon

ligand binding, these PRRs associate with co-receptors

to initiate and activate PTI responses (Fig. 1). LRR-

RLKs that belong to the Somatic-Embryogenesis

Receptor-Like Kinase (SERK) family are common co-

receptors shared by many LRR-type PRRs [41] and

considered to act as common convergence points for

multiple RLK-signalling networks, which are not only

involved in plant immunity, but also in growth and

development [41]. In Arabidopsis, Brassinosteroid

Insensitive 1 (BRI1)-Associated Receptor Kinase 1

(BAK1/SERK3) and BAK1-Like 1 (BKK1/SERK4)

are important members of this family [41–45]. BKK1

and its closest paralog BAK1 share common functions

in (a) brassinosteroid signalling [46–48], (b) FLS2-,

EFR-, and Perception of the Arabidopsis Danger Sig-

nal Peptide 1 or 2 (PEPR1/2)-mediated immune sig-

nalling [49], (c) Haesa- and Haesa-Like 2-mediated

floral organ abscission [50], and (d) (auto-)immunity-

associated cell death control [47,51]. Genetic data

demonstrated BAK1 as the major SERK in

Fig. 2. Domain structure of plant extracellular and intracellular immune receptors. Pattern-recognition receptors (PRRs) are either Receptor-

like kinases (RLKs) or Receptor-like proteins (RLPs) and can have various extracellular ligand-binding domains: leucin-rich-repeat (LRR), lysin

motif (LysM), lectin-, malectin- or epidermal-growth-factor-like domain. RLKs have an intracellular kinase domain that is missing in RLPs.

Most LRR-RLKs and LRR-RLPs associate in a ligand-dependent manner with a LRR-RLK co-receptor of the SERK family. LysM-RLKs

and -RLPs signalling require the ligand-binding induced association with another LysM-RLK type receptor CERK1. LysM-RLPs lack a single-

pass transmembrane domain and are attached to the outer plasma membrane leaflet by a GPI-anchor. Nucleotide-binding-LRR receptors

(NLRs) are multidomain proteins, with a C-terminal LRR domain, a central nucleotide-binding domain and a varying N-terminal domain. TNLs

have a Toll/Interleukin 1 receptor (TIR), CNLs a coiled-coil (CC) and RNLs a RPW8-like CC (CC-R) domain. Most TNLs and CNLs are effector

sensors, whereas RNLs are required for sensor NLR-mediated immunity and considered as helper NLRs.

4 The FEBS Journal (2022) � 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of
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brassinosteroid and immune signalling, as bak1

mutants displayed impaired brassinosteroid and

immune phenotypes that were not detectable in a bkk1

mutant [47,49,52]. BKK1’s contribution was only

observed in the absence of BAK1, as bak1 bkk1

mutants showed an enhanced phenotype compared to

either single mutants. This suggests there is either a

mechanistic regulation that prioritizes interaction of

RLKs with BAK1 over BKK1 or that BAK1 and

BKK1 have different specificities for the activated

downstream signalling components.

BAK1 and BKK1 have also been described as

redundant negative regulators of cell death, as simulta-

neous loss-of-function results in a cell death/lesion-

mimicking phenotype reminiscent of NLR-mediated

autoimmunity [47,51]. Interestingly, the bak1 bkk1-

induced autoimmune phenotype was indeed linked to

NLR-mediated signalling. Genetic loss of a certain

NLR subfamily significantly suppressed the bak1 bkk1

cell death phenotype [51], highlighting an interconnec-

tion of PRR- and NLR-mediated immune signalling

pathways.

Formation of the PRR/co-receptor core complex

leads to a series of auto- and/or trans-phosphorylation

events [40,53–55] that, in the case of RLPs, are medi-

ated by a constitutively associated ‘adaptor’ kinase

[56–58]. These RLP/adaptor kinase complexes are con-

sidered to act equivalently to ligand-binding RLKs

[57], albeit they induce both overlapping and distinct

immune outputs [59], which suggests that RLK- and

RLP-mediated signalling may activate different down-

stream components, at least partially [12]. To translate

ligand binding into downstream responses, PRR/co-

receptor complexes phosphorylate receptor-like cyto-

plasmic kinases (RLCKs) [60–62]. The RLCK

Botrytis-Induced Kinase 1 (BIK1) interacts with FLS2

and EFR, and promotes their triggered immune

responses [60,63]. In FLS2-mediated immunity, it was

shown that following ligand binding, BAK1 directly

phosphorylates BIK1 and thereby causes dissociation

of BIK1 from FLS2, activating downstream signalling

[60,63,64]. Upon activation, BIK1 phosphorylates the

NADPH oxidase Respiratory burst oxidase homologue

protein D (RbohD), promoting ROS production

[65,66]. ROS can function as a secondary messenger

by inducing the expression of genes involved in defence

and stomatal closure, whose role is to restrict pathogen

growth and entry [67,68]. Activated BIK1 also phos-

phorylates and activates Ca2+-permeable cyclic

nucleotide-gated channels (CNGCs), ion channels of

the reduced hyperosmolality-induced [Ca2+] increase/

Transmembrane Protein 63 (OSCA/TMEM63) family

and also glutamate receptor-like channels (GLRs) to

trigger Ca2+ (or other ion) influx upon pathogen per-

ception [69–73]. Just like ROS, Ca2+ further induces

immune responses, such as defence gene expression

and stomatal closure [69,71]. There is also some evi-

dence indicating a mutual interplay between Ca2+ and

ROS signalling during FLS2-mediated responses [74].

A full Ca2+ response/signal is required for proper ROS

production and ROS-signalling, whereas ROS produc-

tion has only a partial effect on the Ca2+ signal, but is

required for a substantial calcium signalling/response

during PTI. RLCKs are also linked to the activation

of MAPKs [61,62], which translate endogenous and

exogenous signals perceived by PRRs via phosphoryla-

tion cascades into downstream responses, such as tran-

scriptional defence gene activation, ethylene and

phytoalexin biosynthesis, stomatal closure, and eventu-

ally pathogen resistance [75]. The importance of

RLCK and MAPK signalling during plant immunity

is emphasized by the fact that many of these proteins

are targeted by a diverse set of pathogen-derived effec-

tors, as discussed in more detail below [5,76,77].

Although many responses induced by RLPs are sim-

ilar to those of LRR-RLKs’, they can differ in timing,

amplitude and output [59]. For example, activation of

RLP23 results in the production of the phytoalexin

camalexin, which is not produced upon activation of

LRR-RLKs [69]. Functionally homologous RLPs that

recognize the same fungal effector, such as the conver-

gently evolved tomato Cf-Ecp5s, appear to induce dif-

ferent responses in terms of timing and strength of the

immune response and expression induction of down-

stream genes required for defence [78]. BIK1 was

shown to play a negative regulatory role in RLP-

mediated immunity and a positive during RLK sig-

nalling [59]. In contrast, the RLCKs PBL31 and, to a

lesser extent, PBL30 have been shown to be positive

regulators of LRR-RLP immune signalling [12]. Thus,

it is plausible that the differences in RLP versus RLK

signal-outputs may result from recruiting specific

RLCKs and activating different downstream signalling

components by these RLCKs.

Suppression of PRR-mediated
immunity by pathogen-derived
intracellular effectors

To overcome PRR-mediated immune responses,

pathogens utilize effector proteins that target critical

components of the plant innate immune signalling cas-

cade, including PRRs, RLCKs, and many other pro-

teins [6]. Comprehensive studies have already

elucidated the role of effector proteins in enhancing

pathogen virulence, mainly in interactions between

5The FEBS Journal (2022) � 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of
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plants and pathogenic bacteria [5,77,79]. The special-

ized secretion systems are vital determinants for the

virulence of many Gram-negative phytopathogenic

bacteria, and their type III secretion system (T3SS)

facilitates pathogen colonization and proliferation in

host plants [77]. Here, we mainly discuss the role of

bacterial type III effectors that target signalling com-

ponents of PTI, including PRRs, RLCKs and

MAPKs.

Pseudomonas syringae type III effector AvrPto inter-

acts with the cytoplasmic kinase domain of PRRs

FLS2 and EFR, interfering with PTI by inhibiting

phosphorylation of FLS2 and EFR (Fig. 1) [80–82].
Pseudomonas syringae type III effector HopAO1 func-

tions as a phosphatase that reduces tyrosine phospho-

rylation at Y836 residue of EFR sufficient for immune

activation upon recognizing bacterial elf18 peptide

from EF-Tu. In addition, HopAO1 also targets the

cytoplasmic kinase domain of FLS2, dampening flg22-

triggered FLS2 activation. However, the detailed

molecular mechanism is still elusive [83,84]. The co-

receptor BAK1 is also a target of the structurally unre-

lated AvrPto and HopF2 bacterial effector proteins.

Pseudomonas syringae AvrPtoB was shown to hinder

FLS2-BAK1 complex formation, thereby inhibiting

PTI activation upon flg22 recognition [82,85,86]. AvrP-

toB suppression of PRR-triggered responses is medi-

ated by the activity of its C-terminal E3 ligase domain,

leading to degradation of FLS2 via the 26S proteaso-

mal degradation pathway. AvrPtoB also binds to

BAK1, inhibiting its kinase activity, and thereby sup-

pressing BAK1 function [80,87,88].

Many bacterial type III effectors have been

described to directly associate with RLCKs and mod-

ify their essential function during an immune response

[60,61]. The spatio-temporal protein dynamics of the

well-studied RLCK BIK1 in the ligand-triggered

FLS2-BAK1 protein complexes is critical to facilitate

FLS2-induced PTI signalling [59,63,65]. Two bacterial

type III effectors, AvrPphB from P. syringae and

AvrAC from Xanthomonas campestris pv. campestris

(Xcc), are known to target and dampen BIK1 func-

tion. AvrPphB, a cysteine protease, interacts with

BIK1 and cleaves it, thereby leading to the interference

of RLK-mediated immune responses [60,89]. Addi-

tional RLCK VII subfamily proteins PBS1 and PBS1-

like (PBL) proteins are also cleaved by AvrPphB,

including RIPK, a key-component required for the

phosphorylation of the small immune regulatory pro-

tein RIN4 [60,90–92]. The uridylyl-transferase AvrAC

uridylates BIK1 by UMP modification at conserved

S236 and S237 phosphorylation sites of the activation

loop. AvrAC also interacts and uridylates other

RLCK VII subfamily members including RIPK and

PBL2 [93,94], known to be also involved in NLR-

mediated immunity [95,96].

Type III effector proteins can also repress PTI

responses by specific biochemical modulation of PTI-

associated MAPKs. The ADP-ribosyl-transferase

HopF2 of P. syringae inhibits PTI activation by inter-

acting with MPK6, MKK5 and other MAP2Ks

(Fig. 1) [86,97]. HopAI1 interacts with MAPKs such

as MPK3, MPK4 and MPK6, suppressing their kinase

activities with a putative phosphothreonine lyase activ-

ity that leads to dephosphorylation of phosphothre-

onine residues in MPK3, MPK4 and MPK6 [98–100].
Different from the dephosphorylation activity of

HopAI1, P. syringae type III effector AvrB induces

phosphorylation of MPK4 and RIN4, thereby increas-

ing negative regulation of immunity (PTI) and thus

the susceptibility of host plants [91,101,102].

Taken together, bacterial type III effectors have

evolved to diminish host PRR-mediated responses by

modulating PRR-induced signalling cascades by

directly targeting PRRs, RLCKs and MAPKs and

thereby promoting pathogen virulence activity. Thus,

understanding the function and mode of action of

effector proteins is necessary for sustainable plant/crop

protection.

NLR-mediated resistance—an
intracellular triggered augmentation
of immunity

Pathogens use their rapidly evolving effectors to cause

disease, facilitate pathogen proliferation and dispersion

in susceptible hosts. However, in resistant hosts effec-

tors or effector function can be recognized, often

inducing a stronger immune response than PRR-

induced immunity. The countervailing assumption is

that during a natural infection, ETI is a potentiation

of the, albeit effector-suppressed, already initiated

PRR-induced immune response. Historically, when

defence signalling pathways were analysed, the

immune outputs triggered by NLRs were often

thought to be qualitatively distinct and separated from

PRR-mediated immunity, but mostly only for the sake

of simplicity. However, recent findings confirmed that

there is extensive crosstalk between the two systems,

leading to a mutual potentiation and interdependency

[13,103–105], which reveal the inseparable nature of

these two systems.

Perception of intracellular pathogen effectors is

mainly driven by immune receptors of the NLR pro-

tein family. NLR-mediated immune responses are

often associated with a localized cell death, the
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hypersensitive response (HR) at infection sites [106],

and historically termed as ETI (Fig. 1) [6,107]. NLR

genes, and also LRR-RLP encoding genes, are evolu-

tionary very dynamic with complex genomic varia-

tions, including presence/absence polymorphisms or

sequence and copy number variations and they are

often located in variably sized clusters and regions of

balancing selection throughout the genome [12,108].

This grants an evolutionary advantage, ensuring that

the plant immune system keeps up with the rapidly

evolving pathogenic effectors. NLRs are modular pro-

teins consisting of a variable N-terminal domain, fol-

lowed by a central nucleotide-binding (NB) domain

and a C-terminal LRR domain (Fig. 2) [107]. Plant

NLRs can be sub-grouped into three classes based on

their N-terminal domains: (a) Toll-like/Interleukin 1

receptor (TIR)-type NLRs (TNLs), (b) coiled-coil

(CC)-type NLRs (CNLs) and (c) Resistance to Pow-

dery Mildew 8 (RPW8) coiled-coil (CC-R)-type NLRs

(RNLs) [109], and functionally into effector sensing

NLRs (sensor NLRs) and helper NLRs, required

downstream of sensor NLRs.

Helper NLRs—PRR and NLR signalling nodes

While all characterized TNLs and most CNLs function

as effector sensors, a small, conserved, and phylogenet-

ically distinct RNL subclass is required downstream of

many effector-perceiving snensor NLRs (Fig. 1) [109–
116]. RNLs are thus also referred to as helper NLRs

[110], and are represented by two subgroups: the Acti-

vated Disease Resistance 1 (ADR1) and N Required

Gene 1 (NRG1) families that have been demonstrated

to function in an unequal redundant manner in Ara-

bidopsis and Nicotiana benthamiana [116–118]. An

important and predominant role of ADR1s is the acti-

vation of pathogen-induced salicylic acid (SA) biosyn-

thesis (a phytohormone produced upon infection of

and required for defence against biotrophic and hemi-

biotrophic pathogens), initiation of SA-related path-

ways and transcriptional reprogramming of defence

genes in basal immunity and upon effector recognition

by TNLs, and to some extent CNLs [110,118].

NRG1s, however, are essential for cell death induction

downstream of most TNLs in Arabidopsis and all

tested TNLs in N. benthamiana, but they can take over

ADR1s’ function in an Arabidopsis adr1s null mutant

[118]. These findings and the conservation of ADR1s

in all seed plants (NRG1s are either absent or appear

to have been lost in monocot genomes) suggest a

broader function for ADR1s during plant immunity

and not only downstream of sensor NLRs [109,119].

Furthermore, recent data demonstrated that the two

RNL subgroups operate separately from each other, in

complex with important regulators of basal and TNL-

mediated immunity—the plant-specific lipase-like

proteins Enhanced Disease Susceptibility 1 (EDS1),

Phytoalexin Deficient 4 (PAD4) and Senescence-

Associated Gene 101 (SAG101) [120,121]. Effector-

activated TNLs induce the association of ADR1s and

NRG1s into specific complexes with EDS1 and PAD4

or EDS1 and SAG101 to trigger disease resistance and

to activate the HR-like cell death, respectively

[122,123]. PAD4 and SAG101 form mutually exclusive

complexes with EDS1. Thus, the RNL-EDS1-PAD4/

SAG101 immune modules are functionally not inter-

changeable, as shown by elegant genetic analysis of

combinatorial mutants of EDS1 and RNL family

members [120,121]. A potential molecular mechanism

regulating and determining the formation of the speci-

fic modules during ETI has recently been suggested.

Small signalling molecules, produced by activated

TIR-domains or TNLs (see below and Figs 1 and 3),

determine which EDS1-heteromere will be triggered

and thus, which RNL subgroup will be recruited and

potentially activated [124,125].

The EDS1-PAD4-ADR1s immune module was

recently demonstrated to be also required for LRR-

RLP-triggered immune responses in Arabidopsis

(Fig. 4) [12,126]. A ligand-independent association of

RLP23 with the EDS1-PAD4-ADR1 module compo-

nents, mediated by the adapter kinase Suppressor Of

BAK1-Interacting Receptor-like Kinase 1 (SOBIR1),

was required for full PTI. This PTI function of RNLs

and the EDS1 complexe is potentially specific to Ara-

bidopsis or Brassicaceae, as CRISPR/Cas-generated

EDS1 and RNL family mutants of N. benthamiana were

not significantly impaired in PRR signalling [127]. Here,

another helper NLR family, the NLR Required for Cell

Death (NRC) proteins, identified in all solanaceous

plant species, could mediate such a function. NRCs are

canonical CNLs and are also required for immune sig-

nalling downstream of multiple sensor CNLs, which are

phylogenetically related to NRCs [128–130]. NRCs

form an NLR immune network with redundant sig-

nalling nodes, but also some degree of specificity

towards their sensor NLRs [129,131]. Interestingly,

NRCs have indeed been reported to be required for

immune and cell death signalling downstream of some

PRR receptors (Fig. 4). Thus, helper NLRs seem to

have evolved or co-opted a function to connect cell sur-

face and intracellular immune receptor networks also in

solanaceous plants [128,132–134]. This is supported by

the finding that the well-conserved NRC3 helper NLR

was shown to be required for the LRR-RLP Cf-4-

mediated cell death [133].
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The most obvious advantage of such a redundant

(NLR) immune signalling network is its ability to

maintain robustness and competence to adequately

respond to rapidly evolving pathogens. Thus, it is not

surprising that convergently evolved pathogen effectors

have been identified to suppress NRC activities

through different mechanisms [135], while others can

potentially target the central key protein EDS1 [136–
138], counteracting central nodes of both NLR- and

PRR-mediated immunity.

Oligomerization into resistosomes—a

prerequisite for NLR activity

Direct effector binding to NLRs, sensing of effector-

mediated modifications or hetero-incompatibility-

induced alterations of NLR guarded proteins, and

mutations in the NLR NB domain, result in

intramolecular conformational changes that can all

trigger NLR oligomerization and eventually activation,

thereby initiating (auto-)immune signalling [139–144].
NLR activation is also linked to the exchange of ADP

by (d)ATP in their NB domain [141]. However, not all

NLRs may require ATP binding for their immune

function [110,143]. NLR oligomerization leads to the

self-association of their N-terminal domains, which are

considered to be the ‘signalling domains’, as over-

expression of several TIR, CC and CC-R domains has

been shown to be sufficient to trigger cell death

[145,146]. Recently, ground-breaking cryo-EM struc-

tural studies of four full-length plant NLRs revealed

the formation of the so-called resistosomes, following

Fig. 3. Discrepancies of the dependency of autoactive and TNL-mediated activation of RNLs on the EDS1-PAD4 heterodimer may indicate an

alternative TNL-mediated immunity activation model. (A) and (B) The autoimmune phenotype of Arabidopsis thaliana plants expressing an

autoactive mutant ADR1-L2 (D484V) helper NLR (RNL) is strongly suppressed in pad4-1 and eds1-12 mutants. This suggests that activated Ara-

bidopsis RNLs, at least ADR1-L2, require ESD1-PAD4-heterodimers for proper (auto-) immune signalling. (C) Hypothetical model of TNL-

mediated RNL and EDS1-PAD4/SAG101 activation. TNL resistosome enzymatic activity (NADase, ADPR polymerase-like) induces monomeric

RNLs to oligomerize into RNL resistosomes that mediate calcium (Ca2+) influx to initiate a cell death response (canonical RNL function). Simulta-

neously, the TNL catalysed signalling moleculs induces association of the EDS1-PAD4/SAG101 heterodimers with monomeric RNLs to activate

various defence responses that are also required for full cell death initiation and proper resistance (non-canonical RNL function).
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effector recognition [141–143,147,148]. The Arabidop-

sis CNL HopZ-Activated Resistance 1 (ZAR1) inter-

acts with the RLCK Resistance-Related Kinase 1

(RSK1) and this ZAR1-RSK1 complex recognizes and

binds the effector-uridylated RLCK PBL2 to form a

pentameric wheel-like structure, the ZAR1

resistosome. In this resistosome, the very N-terminal

a-helices of the five CC domains are exposed and fold

into a funnel-shaped structure that is required for

membrane association, cell death induction, and resis-

tance against Xcc [141]. A follow-up study, with a

strong focus on elucidating the molecular mechanism

Fig. 4. Convergence hubs of PRR- and NLR-mediated immune signalling. Recognition of extracellular effectors or infection associated mole-

cules (ligands) by RLPs requires the SOBIR1 and BAK1 co-receptors, core components of PRR-mediated immunity, in both N. benthamiana

and Arabidopsis. Immune activation (cell death and resistance) by the RLP/SOBIR1/BAK1 complex is mediated by an intracellular core con-

vergent hub consisting of the helper NLR NRC3 and EDS1 in N. benthamiana (left) and the EDS1/PAD4-heterodimer and associated RNLs

of the ADR1 family in Arabidopsis (right). Both helper NLRs, the NRCs and the ADR1s are also required for sensor NLR-mediated immunity

– NRC-dependent sensor NLRs and RNL-dependent sensor NLRs in N. benthamiana and Arabidopsis, respectively. If the other two lipase-

like proteins PAD4 and SAG101 are also involved in RLP signalling in N. benthamiana and whether there is cooperation between NRCs and

EDS1 proteins occurring is not known. NRC function in solanaceous plants is inhibited by the presence of the cyst nematode effector SPRY-

SEC15 (SS15). RNL-dependent sensor TNLs are only found in eudicots.
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of the ZAR1 resistosome function, convincingly

demonstrated the formation of a cation-selective and

Ca2+-permeable channel at the plasma membrane,

essential for the activation of plant immune responses

(Fig. 1) [149].

In contrast to the Arabidopsis CNL ZAR1, the

N. benthamiana TNL Recognition of XopQ 1 (Roq1)

and the Arabidopsis TNL Recognition of Peronospora

parasitica 1 (RPP1), both lacking a CC domain, form

a tetrameric resistosome when activated by their cog-

nate effectors Xanthomonas outer protein Q (XopQ)

and Hyaloperonospora arabidopsidis ATR1, respec-

tively [142,143]. TNL tetramerization brings the TIR

domains into close proximity and results in the forma-

tion of a holoenzyme capable of catalysing small mole-

cules, which can act as ligands for the preformed

EDS1/SAG101 or EDS1/PAD4 immune regulators.

Binding of these specific ligands to either EDS1/

SAG101 or EDS1/PAD4 induces conformational

changes in SAG101 or PAD4 and results in the

recruitment of NRG1s or ADR1s, respectively (Fig. 1)

[124,125].

But how is the activity of TNLs or their TIR

domains inducing cell death? A recently published

study presented structural evidence that the CC-R

domain shares similarity with the N-terminal 4-helix

bundle of the mammalian and plant Mixed Lineage-

Kinase domain-Like (MLKL) protein and the ZAR1

CC domain [113,144,150]. Through a structure–func-
tion analysis and cell biology experiments of autoacti-

vated RNLs (mainly NRG1.1 and ADR1), an

oligomerization and also cation-selective channel func-

tion of RNLs at the plasma membrane was demon-

strated (Fig. 1) [144,151]. Expression of activated

RNLs leads to Ca2+ influx in a human cell line, as in

planta, suggesting that RNL-mediated Ca2+ influx is a

prerequisite for cell death induction and independent

of any other plant proteins. So most likely the TNL-

triggered recruitment of RNLs to the preformed

EDS1/PAD4 or EDS1/SAG101 complexes activates

the RNL and leads to formation of RNL resistosomes

initiating cell death and resistance. Thus, regulation of

ion homeostasis could be a conserved mechanism

among NLRs (CNLs and TNLs activating RNLs) to

induce defence responses.

Cell death and resistance signalling of TIR domains

or full-length activated TNLs requires the presence of

EDS1-PAD4/SAG101 heterodimers and RNLs. How-

ever, cell death initiated by CC-R domains or autoac-

tive Arabidopsis RNLs in N. benthamiana does not

appear to require NbEDS1 [116,144,152,153]. Thus,

EDS1 function can be placed downstream of TNLs

and upstream of RNLs (Fig. 1). Interestingly, the

autoimmune phenotype of Arabidopsis plants, stably

expressing an autoactive mutant ADR1-L2 protein, is

strongly suppressed in pad4 or eds1 mutants (Fig. 3A,

B) [114,154]. This result suggests that the EDS1-

PAD4/SAG101 heterodimers operate in complex with

RNLs as a functional module during (auto-)immunity

and supports the findings that TIR/�domain and full-

length TNL enzymatic activity promotes the

association of RNLs with the EDS1-PAD4/SAG101

heterodimers [120,121,123–125]. However, in an alter-

native model, the catalytic products generated by

TNLs may directly or indirectly and EDS1-

independently activate RNLs to oligomerize into the

cation channel-forming resistosome required for TNL-

induced cell death, and simultaneously these products/

signals initiate the association of (monomeric?) RNLs

with the EDS1-PAD4/SAG101 heterodimers to

activate defence gene expression and SA-related

immune pathways, which in turn would bolster or fur-

ther activate the cell death response (Fig. 3C). Both

pathways would be required for full resistance initiated

by effector-triggered TNL activation and a fully

established autoimmune phenotype.

Suppression of NLR-mediated
immunity

Given the important function of NLRs and specifically

of helper NLRs in plant innate immunity, it may well

be assumed that plant pathogens have evolved effec-

tors that target NLR proteins to interfere with plant

immunity. However, it is interesting that thus far only

a few examples are reported where effectors directly

target NLRs or NLR function. Some of these exam-

ples are from pathogens that have a necrotrophic life-

style, during which, the necrotrophic effector molecule

(often considered a toxin) rather activates the NLR, to

kill the infected cell/tissue ensuing cell death for patho-

gen proliferation, then disabling it [155,156]. Thus,

these molecules can also be considered as elicitors

hijacking the plant’s biotroph immune system. Three

necrotrophic effectors/elicitors, ToxA, victorin and

PC-toxin, produced by pathogenic fungi have been

demonstrated to activate NLR proteins inducing a dis-

ease response and cell death, which would normally

lead to resistance against biotrophic pathogens, but

susceptibility to necrotrophic ones [156]. ToxA is rec-

ognized by Tsn1, an NLR-like protein having an N-

terminal serine/threonine protein kinase (S/TPK)

domain, and sensitivity to PC-toxin and victorin is

conferred by members of the CNL family [157–160].
In all three cases, the activation of the NLR is most

likely facilitated by binding of the necrotrophic
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effector/elicitor to a potential guardee of the NLR and

not to the NLR directly [161]. Thus, these host gene-

necrotrophic effector interactions function opposite of

the classic gene-for-gene interaction, and are therefore

also called ‘inverse gene-for-gene interactions’ [156].

In the past, identification of direct effector targets

was mainly made by performing huge effector-host

protein-interaction screens, such as the systematic

yeast-2-hybrid screens presented in Mukhtar et al. and

Weßling et al. [162,163]. However, only 2 NLRs have

been identified as potential direct effector interactors,

the biological relevance of these interactions has not

yet been studied or proofed in planta. A recently pub-

lished alternative approach to identify effectors poten-

tially targeting NLRs or NLR function screened 165

bacterial, oomycete, nematode and aphid effectors for

their ability to suppress cell death initiated by two

NRC-dependent sensor NLRs, Prf and Rpiblb2, in

N. benthamiana [135]. The authors identified five effec-

tors suppressing cell death mediated by the NRC

immune network, with two of them—the oomycete

effector AVRcap1b and the cyst nematode effector

SPRYSEC15 (SS15)—being also able to specifically

suppress cell death triggered by autoactive mutant

NRCs, indicating that these two effectors directly

oppose NRC activity independently of sensor NLRs.

Indeed, further analysis to understand the molecular

mechanisms of the suppression of these five effectors

revealed that: (a) three effectors suppressed the func-

tion of the sensor NLR Rpi-blb2 upstream of the

NRC helpers, (b) AVRcap1b interferes with a traffick-

ing related protein important for NRC2 and NRC3

function, and (c) SS15 directly binds the nucleotide-

binding domain of NRC2 and NRC3, thereby inhibit-

ing their activity [133].

The bacterial effector protein HopAM1 is another

example of an effector potentially interfering with sen-

sor NLR (in this case TNL) function and/or helper

NLR activation. Infection of plants with P. syringae

pathovars carrying HopAM1 can induce multiple symp-

toms and phenotypes of quantitative nature (cell death

and/or meristem chlorosis, resistance against bacterial

infections or bacterial growth restriction etc.,) depend-

ing on the plant haplotype (ranging from fully respon-

sive to non-responsive) [164,165]. The interference of

plant immunity by HopAM1 is mediated by its non-

canonical TIR domain, which possesses in planta

NADase activity and produces nicotinamide and proba-

bly a unique small signalling molecule, distinct from the

once produced by animal, plant or other bacterial TIR

domains [166]. It is plausible that this molecule beside

its virulence function could interfere with effector-

triggered TNL-produced signalling molecules to inhibit

the immune function of the EDS1-PAD4/SAG101-

RNL modules during PRR and NLR-mediated immune

responses (Fig. 1). This hypothesis is also supported by

the observation that the effect of HopAM1 is dramati-

cally enhanced in eds1 mutants [165].

There is also a number of effectors from different

phytopathogens suppressing immunity triggered by the

recognition of other effectors, or interfering with

downstream components of NLR signalling [167–170].
However, the exact mechanisms are often unknown

and, in most cases, NLR activity or function appears

indirectly inhibited. A good example is AvrRpt2, a

P. syringae effector targeting the Arabidopsis NLR-

and PRR-associated protein RIN4 [171–173].
AvrRpt2-mediated cleavage of RIN4 withdraws it

from being modified by other P. syringae effectors,

including AvRpm1, and thus prevents the activation

of the RIN4-interacting CNL RPM1, which responds

to AvrRpm1-induced modifications of RIN4

[91,92,167,174,175]. However, these two effectors were

insofar absent from the same P. syringae pathovar

[176], suggesting it is unlikely that AvrRpt2 evolved to

suppress RPM1 (NLR) mediated immunity.

In summary, the constant armsrace between plants

and their pathogens led to the evolution of immunity-

suppressing effectors that either directly target NLRs

to inhibit their activity, or interfere with NLR down-

stream components playing key roles during plant

immunity. It is interesting that only a couple of NLR-

targeting effectors have been identified in plant patho-

gens thus far. However, the mutual relationship

between NLR- and PRR-mediated immunity and the

assumption that NLR activation feeds into and poten-

tiates PRR-mediated, effector-inhibited immune

responses in a natural infection [12,13,105,126], suggest

that successful pathogens have evolved effectors that

rather suppress these PRR-triggered and NLR-

amplified pathways to establish virulence, than attack

rapidly evolving NLRs directly.

Core convergence hubs required for
PRR- and NLR-mediated immune
responses

Co-infections represent the vast majority of diseases in

agriculture, and interactions among host plants and

different pathogens determine how detrimental the

resulting disease will be [177,178]. Identifying key dif-

ferences, and more importantly, commonalities

between PRR- and NLR-mediated immunities is criti-

cal in discovering core convergence hubs that are uti-

lized by most pathogens to hijack defences directly

and indirectly [178]. Such core convergence hubs,
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although potential targets of pathogens, can be

selected or engineered to benefit the plant and mount

an effective response, without perturbing the host’s fit-

ness or symbiotic/mutualistic microbes that exist on or

inside the host and inhibit pathogen ingress [179–181].
One of the major discoveries of the recent years was

that there is no strict separation of extracellular

induced PRR-mediated (PTI) and intracellular-induced

NLR-mediated immunity (ETI) [182]. The concept of

a two-tiered, separately operating, innate immune sys-

tem definitely helped to tackle major research ques-

tions of plant-pathogen/microbe interactions, but it

also affected how we looked at these very interlinked

interactions. In the following segments we describe

some notable examples of important hubs that link

PRRs and NLRs.

The RLP-NRC connection—extracellular effector-

recognition requires intracellular NLRs to initiate

a cell death response

An important signalling node is formed by the PRR

co-receptors SOBIR1 and BAK1, which constitutively

or ligand-induced interact with RLPs, respectively, and

are required for RLP function [52,183,184]. The RLP/

SOBIR1/BAK1-containing complexes mediate immune

responses that to date include defence against Cla-

dosporium fulvum [185], Fusarium oxysporum f. sp.

lycopersici [186], Leptosphaeria maculans [187], Magna-

porthe oryzae [188], Phytophthora parasitica [189] and

Verticillium dahlia [190]. Interestingly, RLPs can be

engineered to recognize different pathogen effectors,

but using the same defence signalling apparatus. One

example is the engineered chimeric EFR-Cf-9 receptor

that can recognize elf18 and trigger a Cf-9/Avr9-like

HR [191]. An intracellular bacterial pathogen effector

that blocks many PRR-mediated defences by inhibiting

BAK1 function, such as the P. syringae effector

AvrPto, can suppress the Cf-4/Avr4-triggered HR in

tomato, and thus paves the way for a variety of sec-

ondary or co-infections by C. fulvum strains [192].

Therefore, a successful bacterial infection opens the

door for a fungal infection to also take place, com-

pounding the biotic stress on the plant. How cool is

evolution! Considering that only in the case of C. ful-

vum there is a multitude of novel and unknown effec-

tors across its strains [193], it raises interesting

questions about how microbes might have coevolved

along with their effector repertoires in a mutualistic

relationship by knocking down different host defence

mechanisms.

Perception of the apoplastic fungal effector Avr4 by

the SOBIR1/Cf-4 complex leads to the association

with BAK1 to initiate the effector-triggered hypersensi-

tive response (Fig. 4). Avr4-triggered immune

responses require signalling-competent kinase activity

for both SOBIR1 and BAK1 [56], which phosphory-

late downstream RLCKs. Recently, it was shown that

the cell death triggered by Avr4 recognition through

Cf-4 in N. benthamiana and tomato also requires the

helper NLR NRC3 [132,133]. NRC3 triggers cell death

probably through the formation of an active ZAR1-

like resistosome (Fig. 4). The Cf-4/Avr4-triggered cell

death response also requires EDS1 in N. benthamiana

[132]. How NRC3 and EDS1 are activated by the Cf-

4/SOBIR1/BAK1 complex is not known, but given

that the kinase activities of SOBIR1 and BAK1 are

required for Avr4-triggered cell death, a

phosphorylation-dependent activation could be possi-

ble. It is also not clear whether the NRCs cooperate

with EDS1 (�heterodimers) during RLP-induced

immunity or whether they function independent of

each other or in a synergistic manner (Fig. 4).

The helper NRCs are convergence nodes for plant

immune responses during infections. Therefore, it is

also not surprising that they are targeted by effectors

of at least two different types of pathogens [135]. This

is another indication of pathogen convergent evolution

or coevolution, which probably drove NLR diversifica-

tion during co-infection events. NRC3 appears to be

mediating cell death for a variety of RLPs and swap-

ping domains with other NRCs could lead to a more

efficient immune response, while avoiding targeting by

pathogen effectors.

The EDS1-PAD4-ADR1s module is a signalling

hub for cell surface and intracellular receptor

signalling

The plant-specific EDS1 family is an important com-

ponent of immunity in many but not all plants, regu-

lating the activation of basal defence, SA-dependent

and -independent immune pathways, and NLR-

mediated immunity [194]. Specifically, the EDS1-

PAD4 heterodimers seem to play a more important

role during immunity, as they have been demonstrated

to be the major regulators of transcriptional repro-

gramming and initiation of systemic defences. Most of

the immune functions of the ESD1-PAD4 heterodi-

mers are executed in cooperation with the ADR1

helper NLR family—at least in Arabidopsis [122].

Here, the EDS1-PAD4-ADR1 immunity node is

required for: (a) basal immunity against host-adapted

pathogens [110], (b) TNL-triggered resistance and cell

death, (c) for the timely cell death induction and tran-

scriptional reprogramming during CNL-triggered
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immune responses [118] and (d) for RLP-triggered

(RLP23 and LecRK-1.8) PTI outputs [12,195,196].

The requirement for EDS1 in RLP-triggered immune

outputs was also demonstrated for the tomato RLPs

Ve1 and Cf-4 [132,197]. However, no involvement of

the ADR1s (or PAD4) could be demonstrated for Cf-4

triggered immune responses in N. benthamiana [133].

Thus, the central immune function of the EDS1-

PAD4-ADR1 module may be restricted to Brassi-

caceae species or lost in the Solanaceae linages. The

involvement of the NRC helper NLR NRC3 in Cf-4

triggered immune responses may indicate that in solana-

ceous plants this helper NLR family fulfils the same

function as the RNL helper NLRs in this important cell

surface and intracellular immune receptor convergent

point (Fig. 4). It will be interesting to see whether there

is also an inducible or steady-state interaction observ-

able for the EDS1-heterodimers with members of the

NRC family, as it is seen for the RNL helper NLRs

[120,121]. Similar to the lack of mechanistical insights

into the activation of NRC3 in Cf-4-triggered cell death,

it is not known how the ADR1s are activated, or

whether canonical activity is required for RLP-triggered

immunity in Arabidopsis. It is interesting that a poten-

tial constitutive interaction between the cell surface

receptor complex (RLP23-SOBIR1) and the EDS1-

PAD4-ADR1 module was reported [12], whereas during

TNL-triggered immunity, the EDS1-PAD4 heterodimer

inducibly associates with the ADR1s [121]. Is the associ-

ation of ESD1-PAD4 and the ADR1s mediated during

ETI mechanistically different than during PTI? This still

needs to be clarified. The enhanced TNL expression and

the functional requirement of TNLs for proper PRR

responses suggest that TIR enzymatic activity might

also trigger the tight ADR1 association with the EDS1-

PAD4 heterodimer during PTI. It is also possible that

the observed pre-immunity triggered association of

these important key-immune components is reflecting a

constitutive formation of a super-complex at the plant

plasma membrane functioning as a convergence point

for defence signalling.

These two examples of core convergence hubs are

the result of many years of research, whose notion of

a unified plant immunity system has just started to

pick up traction in plant pathology. The studies that

will follow in the future undoubtedly will shed more

light to these two and other core hubs, as there is an

astronomical number of plant pathosystems out there,

of which we can only study the most important ones

based on our current needs as a society. Major discov-

eries will result in applications destined to become the

next norm for our crop production systems and ensure

global food security.

Conclusions

Plants encounter a massive variety of hostile and non-

hostile microbial organisms throughout their life cycle.

However, plants cannot actively evade these encoun-

ters by just getting out of the way or changing their

habitat. Like other eukaryotes, plants evolved a wide

range of defence strategies on several levels to ward

off most infections. Apart from physical barriers, such

as bark or plant cell walls, plants rely on their inter-

connected receptor-based immune system. PRRs form

protein complexes at the cell surface, consisting of co-

receptors, negative regulators, scaffold proteins, and,

at least in some cases, their immune activation also

relies on proteins important for NLR-mediated immu-

nity [12,103]. This suggests that the recognition of

pathogens and probably also beneficial microbes by

the two immune receptor classes converges on evolu-

tionary quite conserved signalling hubs (convergence

points) for the appropriate induction of immunity.

Various pathogen-secreted effector proteins target and

modify these core immune (PRR) components to sup-

press PRR-mediated immune responses and subse-

quently lead to pathogen proliferation in the plant

host. While most PRR-activated immune responses are

shared between the different classes of PRRs, there are

also some responses specific for certain types of PRRs

[59]. It will be interesting to see what influences the

‘decision’ for a specific output. Furthermore, it still is

unclear how RLCK VII subfamily, such as BIK1 for

example, differentially regulate PRR-mediated sig-

nalling, or how they are recruited and activated [59].

The signalling hubs of PRRs and NLRs are partially

shared, forming spatially defined or connected

supramolecular protein complexes that can detect a

pathogen and respond effectively. In the case, of a full

(PTI plus ETI) immune response, there is a potential

amplification of the first PRR-induced immune

response, which is beneficial evolutionarily, skipping

the need to evolve something completely new, and just

revamping an existing mechanism. However, this car-

ries obvious drawbacks as pathogens can easily evolve

to manipulate these complexes by attacking them in a

multifaceted way, to which the plants have a counter-

measure: the plurality of NLRs and RLPs that can be

easily adjusted to defend against new or unknown

effectors at the population level, and not just individu-

ally. Other interesting open questions are as follows:

(a) whether and how PTI activates or triggers TNL

activation, thus producing signalling molecules that

trigger EDS1/PAD4/SAG101-RNL associations that

could prime other NLRs for porper ETI; (b) do acti-

vated EDS1/PAD4/SAG101 complexes interact with
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monomeric RNLs or RNLs in a preformed, but not

activated oligomeric state?; (c) How do Ca2+ influx

and ROS burst during PTI and ETI activate or regu-

late cell death and/or resistance? (d) Does interplay

between PTI and ETI at the local immune response

contribute to prime systemic immune responses? These

questions will be a focal point of the following years’

research endeavours to discover more convergence

hubs and how they relate to each other on a mutually

exclusive or overlapping manner.

Perspectives

While new knowledge is always useful, to truly envi-

sion designing durable crop resistance and effective

crop protection applications, in an ever-changing envi-

ronment, is actually a very challenging task and sev-

eral factors need to be considered (Fig. 5). First,

extreme weather climate change is expected to alter

crop pathogen distribution geographically, and spread

established diseases into new regions [4,198,199]. Fur-

thermore, in real field conditions, gene-for-gene inter-

actions are the exception and not the rule. Plants are

usually co-infected by multiple pathogens during the

same growing season in a synchronous or asyn-

chronous manner [178,200]. These co-infections are

complex interactions, which take place within a large

plant-associated microbial diversity at the rhizosphere,

phyllosphere and endophytic compartments that can

be antagonistic [201], coexisting [202], mutualistic [203]

or synergistic [204]. Furthermore, pathogens should

not be addressed as a single individual threat, but

alongside insects and weeds, which both can negatively

affect crops, directly or indirectly [205]. These interac-

tions can dramatically alter the response of the plant

or the direction of the disease, rendering unilateral

approaches (genetic, chemical or agronomic) ineffec-

tive. Against such a multifaceted threat, plants could

be equipped with a multitude of natural or engineered

PRRs and NLRs that can preemptively activate both

PTI and ETI, relying on the presence of common

microbes or insects, for effective broad-spectrum resis-

tance, taking into account the cost to fitness of such

activations and the existence of abiotic stresses, due to

extreme climate and antagonism with weeds

[13,14,205]. Alternatively, a common multi-pathogen

host target could be removed or edited by CRISPR-

Cas9 approaches [17].

Second, effective resistance against pathogens

through the utilization of master regulatory immune

elements has frequently resulted into substantial costs

to fitness, rendering such strategies inapplicable in

agriculture [205–207]. This can be overcome partially

by deploying stringent control in transcription and

translation of key defence proteins, through editing of

upstream open reading frames, modifying transcription

factors, or hormone-based control of primary and spe-

cialized metabolite production (i.e. jasmonate), which

all appear to minimize cost to fitness or decouple

growth from defence altogether [15,16,208,209]. How-

ever, our general understanding of the signal transduc-

tion network for each pathosystem is still limited and

there is a need to discover or engineer optimal

defence-associated genes that have minimal cost to fit-

ness on a broad-spectrum for agriculture. Towards this

end, future studies need to focus on: (a) the effect of

different types of pathogen-induced cell death in plants

(Apoptosis-like, Necroptosis, Hypersensitive Response)

and define them more accurately, for example as in

animals [210–212], (b) the presence of hyperactive

defence alleles [213], (c) role of ageing-induced cell

death genes [214], (d) metabolic pathways and energy

consumption during PTI-ETI activation [177,215], (e)

cytotoxic thresholds of pathogen-derived byproducts

during infection [216] and (f) possible epigenetic

growth limitation in future generations after a success-

ful defence response [217].

Third, in the coming decades, climate change,

declining fisheries, soil degradation and higher produc-

tion costs are expected to disrupt agriculture to such a

degree that controlled environment agriculture (CEA)

systems will become a necessity to meet urban food

demand for delicate crops, such as vegetables, legumes,

or low-altitude arboriculture (i.e. kiwifruit); especially

if fusion energy becomes available on an industrial

scale by 2050, which will drastically decrease the cost

of construction, shipping lanes, and make ocean

desalination financially viable globally [218–224]. Con-
trolled environment agricultures can limit pathogen

proliferation compared to rural farming, and in combi-

nation with strict hygienic practices, remote-sensing

technologies and robotics, can severely restrict or elim-

inate diseases altogether [219]. In such settings, co-

infections could be extremely rare and a more conser-

vative approach can be sought by introducing NLR

genes that function in a gene-for-gene manner, which

should be sufficient to protect crops from a small set

of CEA-specific pathogen strains. The advent of recent

custom-made plant disease resistance technologies,

such as Pikobodies, can successfully address CEAs

crop protection by designing a core set of different

NLRs that recognize a collection of common pathogen

core effectors, while considering the cost to fitness in

preventing these infections [14,206,209].

Fourth, effective crop defence does not include only

engineering or breeding resistance genes into a crop,
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Fig. 5. Main factors influencing future crop protection. Infographic summarizing the four main factors that will influence the future of crop

protection in agriculture, along with possible strategies and applications that will be derived from each one (in bold script).
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but it can also include environment-friendly agricul-

tural practices that can protect crops to a large or

small extent, by complementing or enhancing existing

crop defence mechanisms [20,22,225]. This has become

an increasingly urgent target recently, as the world

seeks also to eliminate its dependence on non-

renewable fossil fuel-based agricultural products [226].

By elucidating the commonalities of PRR- and NLR-

mediated immunity, novel synthetic cultures of benefi-

cial bacteria (i.e. biofertilizers and biological control

agents) could be selected or engineered that would

provide a positive plant–soil feedback [227], which is a

wide range of beneficial traits for both the crop and

the local microbiome, without triggering a strong

immune response and simultaneously, warding off

pathogenic strains, pests, or even weeds [23,228–232].
Furthermore, knowledge about what type of defence

host genes are activated during broad- or narrow-

spectrum host infections can lead to: (a) improvement

or development of enhanced molecular diagnostic

tools, such as immunodetection, loop-mediated ampli-

fication, aptamer-based diagnosis, nanoanalytical

biosensors, or portable nanopore sequencing, among

others [18–20,228]; (b) optimization of selection or

engineering of biopesticides in a custom manner that is

crop- or pathogen-specific [225,229,230]; (c) develop-

ment of advanced nanotechnology crop protection

products that can deliver antimicrobial substances or

genetic material, such as non-transgenic nanoparticle-

based NLR gene expression strategies, nanoscale met-

alloids, carbon nanomaterials, liposomes, dendrimers

and many others that are still in their infancy in terms

of being deployed in agriculture, but hold tremendous

potential [20,21,231–233]. In general, nanotechnology

is slowly becoming a very promising tool in the hands

of plant scientists and agronomists, which can soon

become the next norm in disease management and

diagnostics in open field and CEAs [20].

Preparing for the future is challenging, but not as

challenging as it is for plant scientists to breed or

design the crops of tomorrow. To tackle effectively

this next monumental task, we have to think broadly,

decisively, and collectively which path to take. The

clock is ticking and countless lives are on the balance,

just as they were before the Green Revolution in the

1960s [234]. Let‘s get on to it—the future is now!
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